Reduction and restoration of mitochondrial dna content after focal cerebral ischemia/reperfusion.

نویسندگان

  • H Chen
  • C J Hu
  • Y Y He
  • D I Yang
  • J Xu
  • C Y Hsu
چکیده

BACKGROUND AND PURPOSE Oxidative damage of mitochondrial DNA (mtDNA) in the ischemic brain is expected after ischemia/reperfusion injury. A recent study demonstrated limited patterns of mtDNA deletion in the brain after ischemia/reperfusion. We studied the ischemia/reperfusion-induced global changes of mtDNA integrity and its restoration in a rat model of transient focal ischemia in vivo. METHODS Changes in mtDNA content in the ischemic brain were assessed with the use of a rat stroke model featuring transient severe ischemia confined to the cerebral cortex of the right middle cerebral artery territory for 30 or 90 minutes. A new long polymerase chain reaction method, using mouse DNA as an internal standard, was applied to measure the relative content of intact rat mtDNA. Southern hybridization following alkaline gel electrophoresis was conducted in a parallel study to confirm long polymerase chain reaction results. RESULTS A reduction in mtDNA content was found after ischemia for 30 and 90 minutes. The mtDNA was restored to near nonischemic levels 24 hours after 30- but not 90-minute ischemia. CONCLUSIONS These results confirm that ischemia/reperfusion causes mtDNA damages. Restoration of the mtDNA content to nonischemic levels after 30-minute ischemia raises the possibility that mtDNA repair or repletion occurs after brief ischemia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of pentoxifylline on brain edema in a rat model of transient focal cerebral ischemia

Pervious studies have shown that pentoxifylline (PTX) has beneficial effects in reduction of stroke and brain trauma injuries in experimental animals. However, there is very little and controversial information about the effect of PTX on brain edema in cerebral ischemia. Therefore, the aim of this study was to determine the effects of different doses of PTX on brain edema and neurological m...

متن کامل

L-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat

Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all.  Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...

متن کامل

P18: Neuroprotective Effect of Safranal, an Active Ingredient of Crocus Sativus, in a Rat Model of Transient Cerebral Ischemia

Safranal is a monoterpene aldehyde found in saffron (Crocus sativus L.) petals. It has been previously reported that safranal has a wide range of activities such as antioxidant and anti-inflammatory effects. In this study, we examined the effect of safranal on brain injuries in a transient model of focal cerebral ischemia. Transient focal cerebral ischemia was induced by middle cerebral artery ...

متن کامل

Neuroprotective Effects of Exercise on Brain Edema and Neurological Movement Disorders Following the Cerebral Ischemia and Reperfusion in Rats

Introduction: Cerebral ischemia and reperfusion causes physiological and biochemical changes in the neuronal cells that will eventually lead to cell damage. Evidence indicates that exercise reduces the ischemia and reperfusion-induced brain damages in animal models of stroke. In the present study, the effect of exercise preconditioning on brain edema and neurological movement disorders followin...

متن کامل

Reperfusion Promotes Mitochondrial Biogenesis following Focal Cerebral Ischemia in Rats

BACKGROUND AND PURPOSE Reperfusion after transient cerebral ischemia causes severe damage to mitochondria; however, little is known regarding the continuous change in mitochondrial biogenesis during reperfusion. Mitochondrial biogenesis causes an increase in the individual mitochondrial mass of neurons and maintains their aerobic set-point in the face of declining function. The aim of this stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 32 10  شماره 

صفحات  -

تاریخ انتشار 2001